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A class of coupled KdV systems and their bi-Hamiltonian
formulation

Wen–Xiu Ma†
Department of Mathematics, City University of Hong Kong, Kowloon, Hong Kong, People’s
Republic of China

Abstract. A Hamiltonian pair is proposed and thus a type of hereditary operators results. All
the corresponding systems of evolution equations possess local bi-Hamiltonian formulation and
a special choice of the systems leads to the KdV hierarchy. Illustrative examples are given.

Bi-Hamiltonian formulation is significant for investigating integrable properties of nonlinear
systems of differential equations [1–3]. Many mathematical and physical systems have
been found to possess such bi-Hamiltonian formulation. There are two important problems
related to bi-Hamiltonian theory. First, which kind of systems can possess bi-Hamiltonian
formulation and secondly, how to construct bi-Hamiltonian formulation for a given system
if it exists. There are no complete answers to these two problems as yet, although a lot of
general analysis for bi-Hamiltonian formulation itself has been made. However, we should
make as many observations on structures of various bi-Hamiltonian systems as possible, so
that these matters may finally be resolved.

Therefore, in order to enhance our understanding of bi-Hamiltonian formulation, we
would like to search for new examples of bi-Hamiltonian systems among coupled KdV
systems and their higher-order partners. There are already some theories which allow us to
do that. For instance, we can generate soliton hierarchies by using decomposable hereditary
operators [4] or by using perturbation around solutions [5]. In this paper, we simply wish
to present some new concrete examples to satisfy the Magri scheme [1] by considering
decomposable hereditary operators.

Let us choose two specific matrix differential operators:

J =


0 α0∂

α0∂ α1∂

..
.

..
. ...

α0∂ α1∂ · · · αN∂

 M =


0 M0

M0 M1

..
.

..
. ...

M0 M1 · · · MN

 (1)

with

∂ = ∂

∂x
Mi = ci∂3+ di∂ + 2uix + 4ui∂ ui = ui(x, t) 06 i 6 N (2)

whereαi, ci, di , 0 6 i 6 N , are arbitrary constants, butα0 6= 0 which guarantees the
invertibility of J . It is known [6] thatJ andM constitute a pair of Hamiltonian operators
with respect to the potential vectoru = (u0, u1, . . . , uN)

T , that is to say,aJ + bM is a
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Hamiltonian operator for any two constantsa andb, which may also be proved directly by
the Gel’fand–Dorfman algebraic method [2, 7].

Now we can generate a hereditary operator8 = MJ−1 (see, say, [4] for a general
proof), sinceJ is invertible. To express this operator explicitly, we need to compute the
inverse ofJ . In view of the specific form ofJ , we can assume

J−1 =


β0∂
−1 β1∂

−1 · · · βN∂
−1

β1∂
−1 ..

.

... ..
.

βN∂
−1 0

 (3)

whereβi , 06 i 6 N , are constants to be determined. It simply follows that

JJ−1 = (J−1J )T =


α0βN 0

α0βN−1+ α1βN α0βN
...

. . .
. . .

α0β0+ α1β1+ · · · + αNβN · · · α0βN−1+ α1βN α0β

 .
ThereforeJJ−1 = J−1J = IN+1, where IN+1 is an identity matrix operator of size
(N + 1) × (N + 1), leads to an equivalent system of linear algebraic equations forβi ,
06 i 6 N :

α0βN = 1, α0βN−1+ α1βN = 0, . . . , α0β0+ α1β1+ · · · + αNβN = 0 (4)

which may be written as

Aβ = E1 i.e.


0 α0

α0 α1

..
.

..
. ...

α0 α1 · · · αN



β0

β1
...

βN

 =


1
0
...

0

 . (5)

The coefficient matrixA is invertible sinceα0 6= 0, and thus this linear system has a unique
solutionβ = A−1E1. Now we can obtain

8 = MJ−1 =


βN80 0

βN−180+ βN81 βN80
...

. . .
. . .

β080+ β181+ · · · + βN8N · · · βN−180+ βN81 βN80

 (6)

where

8i = Mi∂
−1 = ci∂2+ di + 2uix∂

−1+ 4ui 06 i 6 N (7)

and then the conjugate operator of8 reads as

9 = 8† =


βN90 βN−190+ βN91 · · · β090+ β191+ · · · + βN9N

. . .
. . .

...

βN90 βN−190+ βN91

0 βN90

 (8)

where

9i = 8†i = ci∂2+ di + 2ui + 2∂−1ui∂ 06 i 6 N. (9)

Because the Lie derivative of8 with respect toux is zero, i.e.

Lux8 =
∂

∂ε

∣∣∣∣
ε=0

8(u+ εux)− [IN+1∂,8] = 0
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we have (see, say, [1, 8–10])

[Km,Kn] = ∂

∂ε

∣∣∣∣
ε=0

(Km(u+ εKn)−Kn(u+ εKm)) = 0

Kn := 8nux = 0 m, n > 0.

(10)

This also implies that a hierarchy of systems of evolution equationsut = Kn, n > 0,
has infinitely many common commuting symmetries{Km}∞0 . All systems in the hierarchy
have a common recursion operator8, since the operator8 is hereditary and has a zero
Lie derivative with respect toux : Lux8 = 0. Moreover, due to the specific forms of8i ,
0 6 i 6 N , they are all local, although the recursion operator8 is integro-differential. A
mathematical induction process may easily verify this statement on locality.

In what follows, we want to show local bi-Hamiltonian formulation for all systems
except the first one in the hierarchy (note that sometimes systems of soliton equations have
only one local Hamiltonian structure in bi-Hamiltonian formulation: such examples are the
modified KdV equations and O(3) chiral field equations [11]).

First of all, we observe the second system

ut = K1 = 8ux = MJ−1ux.

The vector fieldJ−1ux can be computed as follows

J−1ux =


β0∂
−1 β2∂

−1 · · · βN∂
−1

β1∂
−1 ..

.

... ..
.

βN∂
−1 0



u0x

u1x
...

uNx



=


β0u0+ β1u1+ · · · + βNuN
β1u0+ β2u1+ · · · + βNuN−1

...

βN−1u0+ βNu1

βNu0



= βN


uN
uN−1
...

u1

u0

+ βN−1


uN−1

uN−2
...

u0

0

+ · · · + β0


u0

0
...

0
0


def=βNX0+ βN−1X1+ · · · + β0XN. (11)

Evidently we can find or directly prove that

f0 := J−1ux = δH̃0

δu
(12)

H̃0 =
∫
H0 dx H0 =

∫ 1

0
〈f0(λu), u〉 dλ = 1

2

N∑
l=0

βl
∑
i+j=l

uiuj (13)

where 〈·, ·〉 denotes the standard inner product ofRN+1. This means thatf0 is gradient.
Now we check whether or not the vector field9f0 is a gradient field, which is required in
the Magri scheme [1]. A direct computation can give

f1m := 9Xm = δH̃1m

δu
H̃1m =

∫ ∞
−∞

H1m dx
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H1m =
∫ 1

0
〈f1m(λu), u〉 dλ

=
N∑
l=m

βl
∑

i+j+k=l−m
[ 1

2(ciujukxx + diujuk)+ uiujuk] 0 6 m 6 N.

These equalities yield

f1 := 9f0 = δH̃1

δu
(14)

where the Hamiltonian functional̃H1 is determined by

H̃1 =
∫
H1 dx H1 =

N∑
m=0

βN−m
N∑
l=m

βl
∑

i+j+k=l−m
[ 1

2(ciujukxx + diujuk)+ uiujuk].

(15)

Therefore the systemut = K1 = 8ux has local bi-Hamiltonian formulation

ut = K1 = 8ux = J δH̃1

δu
= MδH̃0

δu
(16)

whereH̃0 andH̃1 are defined by (13) and (15), respectively.
Secondly, we want to expose bi-Hamiltonian formulation for the other systemsut = Kn,

n > 2. Note that8 = 9† is hereditary, and thatf0 and9f0 are already gradient. According
to the Magri scheme [1, 4], all vector fields9nf0, n > 0, are gradient fields, in other words
there exists a hierarchy of functionals̃Hn, n > 0, such that

fn := 9nf0 = δH̃n

δu
n > 0. (17)

In fact, the Hamiltonian functionals̃Hn, n > 0, must be equal to

H̃n =
∫
Hn dx Hn =

∫ 1

0
〈fn(λu), u〉 dλ n > 0 (18)

and they are all in involution with respect to either Poisson bracket:

{H̃m, H̃n}J :=
∫
δH̃m

δu
J
δH̃n

δu
dx = 0 m, n > 0 (19)

{H̃m, H̃n}M :=
∫
δH̃m

δu
M
δH̃n

δu
dx = 0 m, n > 0. (20)

Thus all vector fieldsKn, n > 1, can be written in two ways as

Kn = 8nux = 8nJf0 = J9nf0 = J δH̃n
δu

n > 1

Kn = 8nux = (J9)9n−1f0 = M9n−1f0 = MδH̃n−1

δu
n > 1

which provide local bi-Hamiltonian formulation

ut = Kn = 8nux = J δH̃n
δu
= MδH̃n−1

δu
n > 1 (21)

for all systemsut = Kn, n > 1. It follows that the systemsut = Kn, n > 0, have
infinitely many common commuting symmetries{Km}∞0 and conserved densities{Hm}∞0 ,
which justifies that they constitute a typical soliton hierarchy.
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Note that the coefficients appearing in our construction are all arbitrary except the
requirement ofα0 6= 0. Thus the resulting systems may contain many interesting systems.
A special choice of

α0 = c0 = 1 αi = ci = 0 16 i 6 N di = 0 06 i 6 N
leads to the KdV hierarchy under the reductionui = 0, 1 6 i 6 N , and thus the above
resulting systems are called coupled KdV systems.

Let us now show some examples. LetN = 0 andα0 = 1. We now have

J = ∂ M = c0∂
3+ d0∂ + 2u0x + 4u0∂ 8 = c0∂

2+ d0+ 2u0x∂
−1+ 4u0.

Whenc0 6= 0, d0 = 0, the corresponding hierarchy is the KdV hierarchy. Whenc0 = d0 = 0,
the corresponding hierarchy is a hierarchy of quasi-linear partial differential equations, of
which the first two nonlinear equations are

ut = 8ux = 6u0u0x ut = 82ux = 30u2
0u0x.

All the vector fields and all the Hamiltonian functionals in this hierarchy are of special form
cum0 u0x andcum0 , wherec is a constant andm ∈ N, respectively.

Let N = 1. The corresponding Hamiltonian pair and hereditary operator become

J =
[

0 α0∂

α0∂ α1∂

]
M =

[
0 c0∂

3+ d0∂ + u0x + 4u0∂

c0∂
3+ d0∂ + u0x + 4u0∂ c1∂

3+ d1∂ + u1x + 4u1∂

]
8 = MJ−1 = M

[− α1

α2
0
∂−1 1

α0
∂−1

1
α0
∂−1 0

]
=
[ 1

α0
80 0

− α1

α2
0
80+ 1

α0
81

1
α0
80

]
where80 = c0∂

2 + d0 + 2u0x∂
−1 + 4u0 and81 = c1∂

2 + d1 + 2u1x∂
−1 + 4u1. The first

nonlinear system is the following

ut = 8ux = J δH̃1

δu
= MδH̃0

δu

=
[ 1

α0
(c0u0xxx + d0u0x + 6u0u0x)

− α1

α2
0
(c0u0xxx + d0u0x + 6u0u0x)+ 1

α0
[(c0u1+ c1u0)xxx + (d0u1+ d1u0)x + 6(u0u1)x ]

]
where the Hamiltonian functionals read as

H̃0 =
∫
H0 dx H0 = 1

α0
u0u1− α1

2α2
0

u2
0

H̃1 =
∫
H1 dx H1 = 1

α2
0

(
c1

2
− c0α1

α0
)u0u0xx + 1

α2
0

(
d1

2
− d0α1

α0

)
u2

0−
2α1

α3
0

u3
0

+ 1

α2
0

[c0

2
(u0u1xx + u0xxu1)+ d0u0u1+ 3u2

0u1

]
.

For a general case ofN , if we choose

α0 = 1 αi = 0 16 i 6 N
c0 = 1 ci = 0 06 i 6 N
di = 0 06 i 6 N

then the resulting systems are exactly the perturbation systems of the KdV hierarchy
introduced in [12] through perturbation around solutions of the KdV equation.

It should be realized that all first nonlinear systems (ut = K1 = 8ux) belong to a
more general class of integrable coupled KdV systems, which was introduced by Gürses
and Karasu in [13], motivated by the Jordan KdV systems in [14]. Moreover the principle
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parts of our coupled KdV systems, i.e. the systems withdi = 0, 06 i 6 N , belong to a
symmetric subclass in the non-degenerate case in [13]. This may be seen by observing the
coefficients

bij =
N∑
k=0

βN−i+j+kck aijk = 2cijk =
2

3
sijk = 4βN−i+j+k 06 i, j, k 6 N (22)

whereβi = 0, i < 0 or i > N , are accepted, after our recursion operators and our coupled
systems in the case ofdi = 0, 06 i 6 N , are rewritten as follows

8(u) = (Rij )(N+1)×(N+1) Rij = bij ∂2+
N∑
k=0

(aijkuk + cijkukx∂−1) (23)

uit = 8(u)ux =
N∑
k=0

bikukxxx +
N∑

k,j=0

sijkujukx 06 i 6 N. (24)

Actually the coefficients defined by (22) satisfy the relations

N∑
k=0

bkl s
i
jk =

N∑
k=0

biks
k
jl

N∑
k=0

sijks
k
lm =

N∑
k=0

silks
k
jm 06 i, j, l, m 6 N

which guarantees [13] that the operators defined by (23) with the coefficientsaijk = 2cijk =
2
3s
i
jk are recursion operators for the systems determined by (24) in the symmetric case of

sijk = sikj .
The other nonlinear systems in each hierarchy determined by a hereditary operator

8 may contain much higher-order derivatives ofu with respect tox, but they still have a
recursion operator and even bi-Hamiltonian formulation. By taking a scaling transformation
t → at , x → bx, u → cu, more concrete examples of integrable coupled KdV systems
[13] can be obtained from our systems.

Compared with the well known coupled KdV systems (for example, see [15–17]), the
above systems are not really coupled because of the first separated component. The Lax
pairs or the spectral problems associated with our systems have not been found yet. If they
are found, master symmetries of the systems can also be presented like those of the well
known coupled KdV systems in [17].

Using an idea of extension in [18], we can obtain much more general Hamiltonian pairs
starting from the one above. There are also other choices of basic Hamiltonian operators,
such as [

rx + 2r∂ s∂

sx + s∂ 0

]
+
[
c1 c2

c2 c3

]
∂ +

[
0 c4

−c4 0

]
∂2

u =
[
r

s

]
ci = constants 16 i 6 4

in [19], which lead to new Hamiltonian pairs and then new integrable systems having
bi-Hamiltonian formulation. However, we need more techniques in manipulation.
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